

Санкт-Петербург 23-24 мая 2023 года

Разработка и производство в России комплексных стабилизаторов для переработки ПВХ

Докладчик: Кассин Артём Сергеевич, заместитель генерального директора ООО «Химстаб»

Крупнейшие производители комплексных стабилизаторов из развитых стран G7

- 1. Adeka Corporation, 1917, Япония.
- 2. Baerlocher, 1823, Германия.
- 3. Chemson Polymer Additive, 1942, Австрия.
- 4. Galata Chemicals, 1960, США.
- 5. PMC Organometallix, 1994, США.
- 6. Reagens, 1952, Италия.
- 7. Sun Ace Corporation, 1940, Япония.
- 8. Valtris Specialty Chemicals, 1950, США.

Фриц Клатте (1880-1934)

Указаны годы основания компаний или их предшественников, месторасположения штаб-квартир.

Освоение производства комплексных стабилизаторов развивающимися странами

- 1. Akdeniz Kimya, 1976, Турция.
- 2. Goldstab Organics, 1997, Индия.
- 3. Jiangsu Uniwel Chemistry, 1991, Китай.
- 4. KD Chem, 1986, Южная Корея.
- 5. Pau Tai Industrial Corporation, 1972, Тайвань.
- 6. РТ Timah, 1976, Индонезия.
- 7. Shital Industries, 1977, Индия.
- 8. Songwon Industrial Group, 1965, Южная Корея.
- 9. Vikas Ecotech, 1984, Индия.

Указаны годы основания компаний или их предшественников, месторасположения штаб-квартир.

Структура потребления комплексных стабилизаторов в России

Регион происхождения	2012	
Европа	78%	
Турция	15%	
Азия	7%	
Россия	0%	

100% 100%

2012

	_	I		
Производитель	Страна	Количество,	Количество,	
Производитель	происхождения	Т	%	
IKA	Германия, Бельгия	7 903	33%	
Reagens	Германия, Италия	2 930	12%	
Chemson	Австрия	2 912	12%	
Akdeniz	Турция	2 495	10%	
Baerlocher	Германия, Италия	2 380	10%	
Profine	Германия	1 360	6%	
Kimflor	Турция	900	4%	
Dansuk	Южная Корея	559	2%	
Akcros Chemicals	Великобритания	517	2%	
WoChang	Южная Корея	400	2%	
Прочие	Китай	1 606	7%	

2022

Произволитоли	Страна	Количество,	Количество,	
Производитель	происхождения	Т	%	
Akdeniz Chemson	Турция	6 691	25%	
Reagens	Германия, Италия	5 811	22%	
Akdeniz Chemson	Австрия	2 136	8%	
Baerlocher	Турция	2 042	8%	
IKA	Германия	1 365	5%	
Baerlocher	Германия, Италия	1 288	5%	
Profine	Германия	1 142	4%	
Valtris	Великобритания	922	3%	
Nimbasia	Индия	864	3%	
Прочие		4 151	17%	
	•	26 412	100%	

23 962 100%

Сегодняшняя реальность

- 1. Деглобализация.
- 2. Френдшоринг*.
- 3. Удлинение цепочек поставок, усложнение и удорожание логистики.
- 4. Сложности в проведении международных расчетов.

^{*} Френдшоринг (om aнг. friendshoring) или аллишоринг (om aнгл. allyshoring) — это производство и закупка товаров в странах, которые являются геополитическими союзниками.

Задачи для российской промышленности

1. «Обеспечить научно-техническое и промышленное развитие для создания на своей территории критически важных технологий».

2. Пройти путь «азиатских тигров»:

- Разработать линейку комплексных стабилизаторов.
- Наладить промышленное производство комплексных стабилизаторов для основных категорий потребителей.

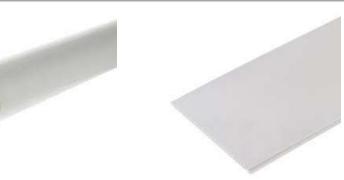
Цель:

- 1. Исключить риски остановки производства из-за невозможности поставки сырья.
- 2. Снизить затраты переработчиков на сырьё.

Стратегия разработок

- 1. Формулирование требований к стабилизатору, исходя из требований к использованию продукта и особенностей технологического процесса.
- 2. Следование принципу «достаточного качества».
- 3. Использование отечественного сырья.

Критерий оценки результата — сравнение с «промышленным стандартом*».


^{*} Промышленный стандарт – известная и широко используемая марка стабилизатора от иностранного производителя.

Марочный ассортимент термостабилизаторов Химстаб

Марка	Область применения
K-70, K-7081	Оболочка контрольного, силового и монтажного кабеля,
K-70, K-7001	внутреннее заполнение силового кабеля
К-70 УЦ	Оболочка установочного кабеля
K-90, K-9081	Изоляция контрольного, силового, монтажного и
K-90, K-9001	установочного кабеля
К-90 УЦ	Изоляция силового и монтажного кабеля
K-1251	Изоляция прозрачного провода
K-1252	Изоляция автопровода и греющего провода
Т	Окрашенные труба, технический, вспененный профиль
ТУЦ	Белые труба, технический, вспененный профиль
П	Прозрачные плёнки и листы

Результаты испытаний стабилизатора Химстаб КЦ К-70

Базовая рецептура негорючей оболочки

	Наименование	НГ	НГП 3032		
Nº		K-70	Пром. станд.		
		м.ч.	м.ч.		
1	ΠBX 271 PC	100	100		
2	ДОТФ	48	48		
3	ЭСМ	1	1		
4	ХП-470	14	14		
5	Химстаб КЦ К-70	4	-		
6	Промышленный стандарт	-	4		
7	Стеариновая кислота	0,3	0,3		
8	Трёхокись сурьмы	3	3		
9	Технический углерод	1	1		
10	Мел природный МК-60	60	60		
Ито	го	231,3	231,3		

Результаты испытаний

Статическая термостабильность при 200 °C, мин.	129,9	62,1
Динамическая термостабильность, мин.	22	20
Удельное объемное электрическое сопротивление, Ом*см	9,30E+14	9,74E+14
Твёрдость, Шор А	82	82
Плотность, г/куб.см	1,46	1,47
Температура размягчения по Вика, °С	53,9	55,4
Прочность до старения, Н/кв.мм	14,72	14,26
Относительное удлинение до старения, %	303,59	275,9

Испытания проведены в Центре развития ПВХ ООО «РусВинил» в рамках совместного проекта. Определение характеристик выполнено по внутренним методикам ООО «РусВинил».

Результаты испытаний стабилизатора Химстаб КЦ К-70

Базовая рецептура внутреннего заполнения кабеля

	Наименование	ПП	ППВ 28		
Nº		K-70	Пром. станд.		
		м.ч.	м.ч.		
1	ΠBX 271 PC	100	100		
2	ДОТФ	75	75		
3	ЭСМ	1	1		
4	Химстаб КЦ К-70	4	-		
5	Промышленный стандарт	-	4		
6	Стеариновая кислота	0,3	0,3		
7	Трёхокись сурьмы	1	1		
8	Мел природный МК-60	300	300		
Ито	го	481,3	481,3		

Результаты испытаний

Статическая термостабильность при 200 °C, мин.	162,1	130,5
Динамическая термостабильность, мин.	24	22
Удельное объемное электрическое сопротивление, Ом*см	-	-
Твёрдость, Шор А	87,2	89
Плотность, г/куб.см	1,83	1,83
Температура размягчения по Вика, °С	68,4	74,6
Прочность до старения, Н/кв.мм	4,96	5,48
Относительное удлинение до старения, %	186,61	173,28

Испытания проведены в Центре развития ПВХ ООО «РусВинил» в рамках совместного проекта. Определение характеристик выполнено по внутренним методикам ООО «РусВинил».

КОМПЛЕКСНЫЙ Ca-Zn СТАБИЛИЗАТОР ООО «ХИМСТАБ» КЦ К-70 НЕГОРЮЧАЯ ОБОЛОЧКА И ВНУТРЕННЕЕ ЗАПОЛНЕНИЕ КАБЕЛЯ

Соответствует по своим характеристикам промышленному аналогу.

Рекомендован к промышленным тестам по результатам триалов в «Центре Развития ПВХ» ООО «РусВинил».

		000 «Химстаб» КЦ К-70	«Промышленный аналог»
1	Динамическая термостабильность расплава*	00000	00000
1	Статическая термостабильность расплава**	0000	00000
1	Удельное объемное электрическое сопротивление	00000	00000
1	Температура размягчения по Вика	00000	
1	Прочность при растяжении	00000	
1	Относительное удлинение при растяжении	00000	0000
1	Твердость, Шор А	00000	00000
1	Плотность	00000	
1	Реологические характеристики*	00000	00000

^{* -} Характеристики определены на пластографе (реометр крутящего момента) НААКЕ™

Отв.: Руководитель службы технического сервиса и RnD OOO «РусВинил» Иван Логутов

Mo6: +79101003569 e-mail: Ivan Logutov@rusvinyl.ru

^{**-} Характеристики определены на приборе 895 Professional PVC Thermomat посредством дегидрохлорирования

Результаты испытаний стабилизатора Химстаб КЦ К-90

Базовая рецептура кабельной оболочки

	Наименование	ППС	D 2035
Nº		K-90	Пром. станд.
		м.ч.	м.ч.
1	ΠBX 271 PC	100	100
2	ДОТФ	50	50
3	ЭСМ	1	1
4	Химстаб КЦ К-90	5	-
5	Промышленный стандарт	-	4
6	Стеариновая кислота	0,3	0,3
7	Белила цинковые	2	2
8	Трёхокись сурьмы	3	3
9	Борат цинка	4	4
10	Технический углерод	1	1
11	Мел природный МК-60	80	80
12	Гидроксид алюминия	40	40
Ито	го	286,3	285,3

Результаты испытаний

Статическая термостабильность при 200 °C, мин.	67,7	48,4
Динамическая термостабильность, мин.	22	20
Удельное объемное электрическое сопротивление, Ом*см	8,50E+12	1,68E+15
Твёрдость, Шор А	90,2	91,4
Плотность, г/куб.см	1,63	1,63
Температура размягчения по Вика, °С	67,1	65,6
Прочность до старения, Н/кв.мм	10,18	10,33
Относительное удлинение до старения, %	139,28	141,82

Испытания проведены в Центре развития ПВХ ООО «РусВинил» в рамках совместного проекта. Определение характеристик выполнено по внутренним методикам ООО «РусВинил».

КОМПЛЕКСНЫЙ Ca-Zn СТАБИЛИЗАТОР ООО «ХИМСТАБ» КЦ К-90 ОБОЛОЧКА КАБЕЛЯ

Соответствует по своим характеристикам промышленному аналогу.

Рекомендован к промышленным тестам по результатам триалов в «Центре Развития ПВХ» ООО «РусВинил».

		ООО «Химстаб» КЦ К-90	«Промышленный аналог»
1	Динамическая термостабильность расплава*	00000	00000
V ***	 Статическая термостабильность расплава** 	00000	00000
1	Удельное объемное электрическое сопротивление	00000	00000
1	Температура размягчения по Вика	00000	0000
1	Прочность при растяжении	00000	
1	Относительное удлинение при растяжении	00000	
1	Твердость, Шор А	00000	00000
1	Плотность	0000	
1	Реологические характеристики*	00000	00000

^{* -} Характеристики определены на пластографе (реометр крутящего момента) НААКЕ™

Отв.: Руководитель службы технического сервиса и RnD OOO «РусВинил» Иван Логутов

wo6 : +79101003569 e-mail: Ivan Logutov@rusvinyt.ru

^{**-} Характеристики определены на приборе 895 Professional PVC Thermomat посредством дегидрохлорирования

 ^{*** -} При хороших результатах динамической термостабильности снижение статической термостабильности расплава не оказывает влияние на процесс переработки и потребительские свойства готовой продукции

Результаты испытаний стабилизатора Химстаб КЦ К-90 УЦ

Базовая рецептура кабельной изоляции

	Наименование	ППИ 2032	
Nº		К-90 УЦ	Пром. станд.
		м.ч.	м.ч.
1	ΠBX 271 PC	100	100
2	ДОТФ	45	45
3	ЭСМ	1	1
4	Химстаб КЦ К-90 УЦ	4	-
5	Промышленный стандарт	-	4
6	Стеариновая кислота	0,3	0,3
7	Трёхокись сурьмы	1	1
8	Борат цинка	2	2
9	Мел природный МК-60	80	80
10	Гидроксид алюминия	20	20
Ито	Итого 253,3 253,3		

Результаты испытаний

Статическая термостабильность при 200 °C, мин.	164,3	197,0
Динамическая термостабильность, мин.	24	20
Удельное объемное электрическое сопротивление, Ом*см	9,06E+13	6,94E+13
Твёрдость, Шор А	93	92
Плотность, г/куб.см	1,57	1,59
Температура размягчения по Вика, °С	64,3	65,4
Прочность до старения, Н/кв.мм	12,98	12,81
Относительное удлинение до старения, %	163	161

Испытания проведены в Центре развития ПВХ ООО «РусВинил» в рамках совместного проекта. Определение характеристик выполнено по внутренним методикам ООО «РусВинил».

КОМПЛЕКСНЫЙ Ca-Zn СТАБИЛИЗАТОР ООО «ХИМСТАБ» КЦ К-90 УЦ ИЗОЛЯЦИЯ КАБЕЛЯ

Соответствует по своим характеристикам промышленному аналогу.

Рекомендован к промышленным тестам по результатам триалов в «Центре Развития ПВХ» ООО «РусВинил».

		ООО «Химстаб» КЦ К-90 УЦ	«Промышленный аналог»
1	Динамическая термостабильность расплава*	00000	00000
1	Статическая термостабильность расплава**	00000	
1	Удельное объемное электрическое сопротивление	00000	
1	Температура размягчения по Вика	00000	
1	Прочность при растяжении	00000	
1	Относительное удлинение при растяжении	00000	
1	Твердость, Шор А	00000	0000
1	Плотность		
1	Реологические характеристики*	00000	0000

^{* -} Характеристики определены на пластографе (реометр крутящего момента) НААКЕ™

Ота: Руководитель службы технического сервиса и RnD ООО «РусВинил» Иван Логутов

wo6.: +79101003569 e-mail: Ivan.Logutov@rusvinyl.ru

^{**-} Характеристики определены на приборе 895 Professional PVC Thermomat посредством дегидрохлорирования

Результаты испытаний стабилизатора Химстаб КЦ К-125

Базовая рецептура высокотемпературного пластиката

	Наименование	ИТ-105	
Nº		K-125	Пром. станд.
		м.ч.	м.ч.
1	ΠBX 271 PC	100	100
2	TOTM	60	60
3	Химстаб КЦ К-125	10	-
4	Промышленный стандарт	-	10
5	Стеариновая кислота	-	0,2
6	Воск ПВ-200	0,6	-
7	Диоксид титана	1	1
Ито	Итого 171,6 171,2		171,2

Результаты испытаний

Статическая термостабильность при 200 °C, мин.	247,4	225,6
Динамическая термостабильность, мин.	25	25
Удельное объемное электрическое сопротивление, Ом*см	1,49E+13	1,49E+13
Твёрдость, Шор А	79	81
Плотность, г/куб.см	1,24	1,25
Температура размягчения по Вика, °С	47,6	47,1
Прочность до старения, Н/кв.мм	17,91	18,12
Относительное удлинение до старения, %	374,61	347,22

Испытания проведены в Центре развития ПВХ ООО «РусВинил» в рамках совместного проекта. Определение характеристик выполнено по внутренним методикам ООО «РусВинил».

КОМПЛЕКСНЫЙ Ca-Zn СТАБИЛИЗАТОР ООО «ХИМСТАБ» КЦ К-125 ТЕРМОСТОЙКАЯ ИЗОЛЯЦИЯ

Соответствует по своим характеристикам промышленному аналогу.

Рекомендован к промышленным тестам по результатам триалов в «Центре Развития ПВХ» ООО «РусВинил».

		ООО «Химстаб» КЦ К-125	«Промышленный аналог»
1	Динамическая термостабильность расплава*	00000	00000
1	Статическая термостабильность расплава**	0000	00000
1	Удельное объемное электрическое сопротивление	00000	00000
1	Температура размягчения по Вика	0000	
1	Прочность при растяжении	00000	
1	Относительное удлинение при растяжении		0000
1	Твердость, Шор А	00000	00000
1	Плотность	00000	
1	Реологические характеристики*	00000	00000

^{* -} Характеристики определены на пластографе (реометр крутящего момента) НААКЕ™

Отв.: Руководитель службы технического сервиса и RnD ООО «РусВинил» Иван Логутов

wo6.:+79101003569 e-mail: Ivan Logutov@rusvinyl.ru

^{**-} Характеристики определены на приборе 895 Professional PVC Thermomat посредством дегидрохлорирования

Результаты испытаний стабилизатора Химстаб КЦ Т

Рабочая рецептура трубы

T	руба	
Т	Пром. станд.	
м.ч.	м.ч.	
100	100	
1,3	1,3	
2,4	-	
-	2,4	
5	5	
0,3	0,3	
0,15	0,15	
0,3	0,3	
30	30	
139,45	139,45	
Результаты испытаний		
185	185	
30	30	
52	82	
24	42	
24,7	17,7	
166,8	171,7	
56	88	
31,6	29,8	
177,0	180,3	
26,4	26,9	
	T M.ч. 100 1,3 2,4 - 5 0,3 0,15 0,3 30 139,45 185 30 52 24 24,7 166,8 56 31,6 177,0	

190,2

10' 34"

189,9

8' 40"

Температура в конце теста, °С

Динамическая термостабильность, мин.

Результаты испытаний стабилизатора Химстаб КЦ Т УЦ

Рабочая рецептура белой стеновой панели

	Наименование	Стенова	Стеновая панель	
Nº		Т УЦ	Пром. станд.	
		м.ч.	м.ч.	
1	Поливинилхлорид	100	100	
2	Акриловый модификатор перерабатываемости	1,3	1,3	
3	Химстаб КЦ Т УЦ	4	-	
4	Промышленный стандарт (Pb)	-	4,5	
5	Диоксид титана	4	4	
6	Моностеарат глицерина	0,3	0,3	
7	Дистеарат пентаэритрита	0,6	0,6	
8	Микромрамор	100	100	
9	Оптический отбеливатель	0,05	0,05	
Ито	го	210,25 210,75		

Результаты испытаний

	1 000	
Температура смешения, °С	200	200
Скорость вращения валов, об./мин.	60	60
Время пластикации, сек.	60	68
Время достижения минимума (В), сек.	30	32
Момент при минимуме, Н*м	12,1	10,9
Температура при минимуме, °С	170,8	170
Время достижения максимума (Х), сек.	62	72
Момент при максимуме, Н*м	42,2	41,8
Температура при максимуме, °С	185,0	184,6
Момент в конце теста (Е), Н*м	30,4	29,0
Температура в конце теста, °С	206,6	203,1
Динамическая термостабильность, мин.	20' 44"	15' 52"
Цвет плёнки после вальцевания в течение 15 мин. при	L=81,1	L=79,9
температуре 200 °C	a=+1,1	a=+1,7
	b=+2,4	b=+3,3

Этапы разработки

- 1. Исследование состава «промышленного стандарта» с помощью спектроскопических, гравиметрических, титриметрических, хроматографических, микроскопических и иных инструментальных методов анализа с использованием методов разделения и концентрирования.
- 2. Разработка рецептуры стабилизатора с учётом требований к использованию продукта и особенностей технологического процесса.
- 3. Испытание лабораторного образца.
- 4. Испытание промышленного образца.
- 5. Промышленные испытания на рецептуре и оборудовании заказчика.

Avvv + ZnCl₂

Что гарантирует качество продукции

- 1. Отбор поставщиков и контроль качества сырья:
 - Содержание основного вещества
 - Температура плавления
 - Гранулометрический состав
- 2. Контроль в процессе производства:
 - Технологический режим
- 3. Контроль качества готовой продукции:
 - Термостабильность
 - Влажность
 - Зольность
 - Насыпная плотность

Конкурентные преимущества

- Сокращение и упрощение логистических цепочек, стабильность поставок.
- 2. Снижение запасов на стороне заказчика.
- 3. Адаптация к возможностям оборудования и технологического процесса заказчика.
- 4. Возможность замены импортных комплексных стабилизаторов без перестройки процесса производства.

Перспективы

- 1. Производство гранулированных продуктов.
- 2. Повышение комплексности решений:
 - Оконный профиль
 - Напольные покрытия
 - Мембраны
- 3. Производство однопакетных стабилизаторов.

Спасибо за внимание!

Контакты ООО «Химстаб»

E-mail: <u>salestab@himstab.ru</u>

Телефон: +7 (495) 789-86-77

Адрес: 141402, Московская область, г. Мытищи,

проезд 4529, владение 5, строение 1

Сайт: www.himstab.ru

